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1 Description of model

The model was written in Python and implemented via a Jupyter notebook.
Code is available at: https://github.com/regicid/Deprivation-antisociality.
We recommend using the version ’didactic-code.ipynb’ for a simple way of get-
ting started with the model. The repository also contains R code used to make
the figures in the paper.

1.1 Computing optimal policies

We used a stochastic dynamic programming algorithm (Mangel and Clark 1988,
Houston and McNamara 1999). Agents choose among a set of possible actions,
defined by (probabilistic) consequences for the agent’s level of resources s. We
seek, for every value of s and of p (the probability that cooperation attempts
will be exploited), the action that maximises expected fitness. Maximization
is achieved through backward induction: we begin with a ‘last time step’ (T )
where fitness is defined, as an increasing linear function of resource level s. Then
in the period T −1 we compute for each combination of state variables and each
action the expected fitness at T , and thus choose for the optimal action for
every combination. This allows us define expected fitness for every value of the
state variables at T − 1, repeat the maximization for time step T − 2, and so on
iteratively. The desperation threshold is implemented as a fixed fitness penalty
ω that is applied whenever the individual’s resources are below the threshold
level s = 0. As the calculation moves backwards away from T , the resulting
mapping of state variables to optimal actions converges to a long term optimal
policy.

1.1.1 Actions and payoffs

Agents choose among three actions:
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• Cooperate: The agent invests x units of resource and is rewarded α ·x with
probability 1− p (p is the probability of cooperation being exploited, and
1− p is therefore the trustworthiness of the surrounding population), and
0 with probability p. The net payoff is therefore x · (α − 1) if there is no
exploitation and−x if there is. We assume that α > 1 (by default α = 1.2),
which means that cooperation is more efficient than foraging alone. For
the computation of optimal policies, we treat p as an exogenous variable.
In the population simulations, it becomes endogenous.

• Exploit : an agent tries to steal their partners’ investments, leading to
a reward of β · x if the exploitation succeeds and a cost π if it fails. the
probability of exploitation success is γ. We consider cases where (1−γ)π ≥
γβx in order that exploitation has a negative expected payoff.

• Forage alone: The agent forages alone, investing x units of resource, re-
ceiving x in return, and suffering no risk of exploitation.

Payoffs are also affected by a random perturbation, so the above-mentioned
payoffs are just the expected values. A simple form such as the addition of
ε ∼ N (0, σ2) would be unsuitable when used in population simulations. As
variance of independent random variables is additive, it would inevitably lead
to an ever increasing dispersion of resource levels in the population. To avoid
this issue, we adopted a perturbation in the form of a first-order autoregressive
process that does not change either the mean or the variance of resources in the
population (for a formal proof, see Bateson and Nettle 2017):

st+1 = (1− r) · st + r · ε

ε ∼ N (µ,
1− r2

(1− r)2
· σ2)

Here, µ is the current mean resources in the population and σ2 the population
variance in resources. The term (1−r) ∈ [0, 1] represents the desired correlation
between an agent’s current and subsequent resources, which leads to us describ-
ing r as the ‘social mobility’ of the population. The perturbation can be seen as
a ‘shuffle’. Each agent’s resource level is attracted to µ with a strength depend-
ing on r, but this regression to the mean is exactly offset at the population level
by the variance added by the perturbation, so that the overall distribution of
resources is roughly unchanged. If r = 1, current resources are not informative
about future resources.

1.1.2 The fitness function

The dynamic programming algorithm only requires a ‘terminal reward’ (the
fitness function in the last time step T ), then computes the fitness function at
any earlier time t by backward induction. We make terminal reward a linear
function of resource level s, but introduce a‘desperation threshold’. During the
computation, fitness is reduced by a fixed penalty ω for any resource value s < 0
at any time step.
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1.1.3 The dynamic programming equation

Let I be the set of actions (cooperate,exploit and hide), which we shorten as
I = {C,H,E}. For i ∈ I, we denote φit(s, ·) the probability density of resources
in in time step t if, in time step t − 1, the resource level is s and the chosen
action i. The expressions of these functions were obtained through the law
of total probability, conditioning on the possible outcomes of the actions (e.g.
success or failure of the exploitation and of cooperation), and with the Gaussian
density of the random variable ε.

We can now write the dynamic programming equation, which gives the back-
ward recurrence relation to compute the fitness values (and the decisions) at the
period t from the ones at the period t+ 1.

ft(s) = max
i∈I

Ei(ft+1)

= max
i∈I

∫
(ft+1(x)− ω · 1x<0) · φit+1(s, x)dx

where we have noted Ei the conditional expectancy if action i is played. The
optimal action for the resource state s and the period t is argmax

i∈I
Ei(ft).

The resource variable s was bounded in the interval [−50, 50], and discretized
with 1001 steps of size 0.1.

For any given set of parameters (summarised in table S1), we can therefore
compute the optimal decision rule. Note that we can distinguish two types of
parameters:

• ‘Structural parameters’, i.e. those defining the ‘rules’ of the game (the
payoffs for the actions and the level of social mobility r, for example). In
the subsequent simulation phase, these parameters will be fixed for any
run of the simulations.

• ‘Input parameters’, such as p and s. In the simulation phase, these will
evolve endogenously. In the computational of optimal policies, we seek
optimal actions for all their possible values.

Optimal policies rapidly stabilize as the computation moves away from T .
We report optimal actions at t = 1 as the globally optimal actions.

1.2 Population simulations

1.2.1 Simulation principles

We begin each simulation by initializing a population of N = 500 individuals,
whose resource levels are randomly drawn from a Gaussian distribution with
a given mean µ and variance σ2. At each time step, interaction groups of n
individuals are formed at random, and re-formed at each time step to avoid
effects of assortment. There is no spatial structure in the populations. Each
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Structural parameters
Symbol Meaning Typical value

r Social mobility 0.1

x Investment in cooperation 1

ω
Fitness cost imposed

5
below the desperation threshold

α Efficiency of cooperation 1.2

β Benefit of successful exploitation 5

π Punishment for exploitation 10

γ Probability of punishment 1/3

n Interaction group size 5

N Population size 500

T Total number of time steps 50

Inputs

Symbol Meaning

µ Population mean resources

σ Population dispersion of resources (inequality)

p Probability of being exploited (hence 1 − p is trustworthiness)

s Current level of resources

Functions

Symbol Meaning

ft(·) Fitness function at time step t

Probability density of resources at t for
φi
t(·, s) an agent whose resources are s in t− 1

and playing action i

Table S1. Notation used in the model, and default values for structural param-
eters

individual always follows the optimal policy for its resources s and its estimate
of p (see below).

To deal with the case where several members of the same interaction group
choose to exploit, we choose one aat random that exploits, and the others are
deemed to forage alone (in effect, there is nothing left for them to take). Also,
when there is no cooperator in the group, all exploiters are deemed to forage
alone.

Rather than providing each individual with perfect knowledge of the trust-
worthiness of the rest of the population 1 − p, we allow individuals to form an
estimate (their social trust) from their experience. Social trust is derived in the
following way.

• Each agent observes the decision of a sample of K individuals in the popu-
lation, counts the number k of exploiters and infers an (unbiased) estimate
of the prevalence of exploiters in the population: k′ = k

K · N (rounded).
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The size of the sample can be varied to alter the precision with which
agents can estimate trustworthiness. Unless otherwise stated we used
K = 50.

• Since p is the probability that there will be at least one exploiters in an
interaction group, it is one minus the probability that there will be zero.
Each agent computes this from k′ by combinatorics:(

N ·n−1−k′

n−1
)(

N ·n−1
n−1

) (1)

An intentional consequence of social trust being estimated through sampling
is that there is some population heterogeneity in social trust, and therefore in
decisions about which action to take, even for agents with the same resources
s. Note also that agents infer trustworthiness not from observing the particular
individuals in their current interaction group, but rather, from a cross-section of
the entire population. Thus, the estimate is genuinely social trust (the percep-
tion that people in society generally do or do not behave well), rather than per-
sonal trust (reputational information about the specific individual with whom
one is currently interacting).

2 Supplementary results

2.1 Effective long-term fitness function

Optimal policies are computed by backward induction starting from the final
time step T , given the terminal reward function and the penalty ω. However,
it is also possible to calculate the expected fitness at t = 1 for individuals
with different levels of resources s, assuming that optimal policies are followed
at every subsequent time step, and other parameters are held constant. This
initial fitness-prospects function is shown in figure S1.

This function explains much of the behaviour of the model. Individuals
beginning with very low resources (below the desperation threshold) have ex-
tremely low expected fitness, even following the optimal policy. This is because
they are likely to incur the penalty for being in desperation in almost every
subsequent time step. The gain in expected fitness from being immediately
below to immediately above the desperation threshold is extremely steep; an
individual who is immediately above can permanently avoid falling below, by
either foraging alone, or, if the trustworthiness of the surrounding population
is high enough, cooperating. Once individuals are well above the threshold, the
marginal gain from resources being still higher is real but more modest; they
will have higher resources at the terminal reward point, but this is much less
influential than the fact of having avoided paying the penalty for desperation.
This non-linear mapping explains conceptually why there is a combination of
extreme risk-proneness in the vicinity of the threshold and below, and relative
risk aversion well above it.
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Figure S1. Expected fitness at t = 1 as a function of resources

2.2 Optimal choice between foraging alone and cooperat-
ing

For s � 0, considerations of risk-sensitivity become irrelevant, and the choice
between foraging alone and cooperating is well approximated by choosing the
action of the two with the higher expected return (since both actions involve
the same investment). The expected return for foraging alone is x, whilst the
expected return for cooperating is (1 − p)αx. Thus, the expected payoff for
cooperating is superior when:

(1− p)αx > x

(1− p)α > 1

(1− p) > 1

α

This inequality well captures the division between the foraging alone and coop-
erating zones shown in figure 1 of the main paper.

2.3 Cases where the expected payoff of exploitation is pos-
itive

In our default case, the expected payoff of exploitation is zero, and in the main
paper we also consider cases where γ and/or π are larger and hence the expected
payoff for exploitation is negative. We can also make the expected payoff for
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exploitation positive, by making γ and/or π sufficiently small that (1 − γ)β >
γπ. These situations produce an optimal action policy where exploitation is
favoured at either critically low, or comfortably high levels of resources (figure
S3). In between, either cooperation or foraging alone is optimal, depending
on trustworthiness. In these situations, those who are at a comfortable level
of resources can afford to take the hit of a punishment, and thus can pursue
risky but potentially profitable exploitation. It is individuals at an intermediate
resource level, who are currently above the threshold but would be damagingly
dragged below it by a punishment, who cannot risk exploiting.
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Figure S2. Optimal action policy with π = 5 and other parameters at their
default values.

2.4 Implementation of exogeneous shock

We ran simulations with initial µ = 5.5 and σ = 4 (other parameters have their
default values), then switched to σ = 3 after 16 time steps (figure S4). As the
figure shows, the response to the shock is slightly lagged. Over the course of a
couple of time steps, the prevalence of exploitation reduces through the effects
of the reduced inequality, but cooperation has not yet increased, since trust is
still low. With exploitation rarer, social trust now increases one time step later,
since social trust updates at the end of the time step. This then causes a cascade
of switching to cooperation and the evolution of the virtuous circle.
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Figure S3. Phase transition provoked by exogeneous inequality reduction at
time step 16. Parameter values from time step 1 are as figure 2A of main paper.

2.5 Varying interaction group size

The parameter n affects the simulations through the mapping between the num-
ber of exploiters in the population, and the probability of any particular coop-
eration group containing at least one exploiter (p), which, in turn, determines
the agents’ levels of social trust (estimates of 1− p). Concretely, for any given
population prevalence of exploitation, increasing n will reduce the social trust
of the individuals, as there is more likely to be at least one exploiter in a group
of ten than in a group of five. This effect is plotted in figure S2.
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Figure S4. Impact of interaction group size on social trust
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